From Innate to Adaptive Immune Response in Muscular Dystrophies and Skeletal Muscle Regeneration: The Role of Lymphocytes
نویسندگان
چکیده
Skeletal muscle is able to restore contractile functionality after injury thanks to its ability to regenerate. Following muscle necrosis, debris is removed by macrophages, and muscle satellite cells (MuSCs), the muscle stem cells, are activated and subsequently proliferate, migrate, and form muscle fibers restoring muscle functionality. In most muscle dystrophies (MDs), MuSCs fail to properly proliferate, differentiate, or replenish the stem cell compartment, leading to fibrotic deposition. However, besides MuSCs, interstitial nonmyogenic cells and inflammatory cells also play a key role in orchestrating muscle repair. A complete understanding of the complexity of these mechanisms should allow the design of interventions to attenuate MDs pathology without disrupting regenerative processes. In this review we will focus on the contribution of immune cells in the onset and progression of MDs, with particular emphasis on Duchenne muscular dystrophy (DMD). We will briefly summarize the current knowledge and recent advances made in our understanding of the involvement of different innate immune cells in MDs and will move on to critically evaluate the possible role of cell populations within the acquired immune response. Revisiting previous observations in the light of recent evidence will likely change our current view of the onset and progression of the disease.
منابع مشابه
FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration
Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle...
متن کاملKiller Cell Immunoglobulin-Like Receptors Influence the Innate and Adaptive Immune Responses
Natural killer (NK) cells are a subset of lymphocytes which play a crucial role in early innate immune response against infection and tumor transformation. Furthermore, they secrete interferon-γ (IFN-γ) and tumor necrosis factor (TNF) prompting adaptive immu-nity. NK cells distinguish the unhealthy cells from the healthy ones through an array of cell-surface receptors. Human NK cells use inhibi...
متن کاملسلولهای بنیادی مزانشیمی و کاربرد آنها در درمان بیماریهای خود ایمن: مقاله مروری
Mesenchymal Stem Cells (MSCs) are well known as the regulator of the immune system. These multipotent non-hematopoietic progenitor cells have been originally isolated from bone marrow, and later on found in several other tissues, such as skeletal muscle, umbilical cord blood, adipose and fetal liver tissues. Immunomodulatory effects of MSCs on a variety of immune cells such as T and B lymphocyt...
متن کاملInfluence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies
Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discu...
متن کاملBiglycan
Research over the past few years has provided fascinating results indicating that biglycan, besides being a ubiquitous structural component of the extracellular matrix (ECM), may act as a signaling molecule. Proteolytically released from the ECM, biglycan acts as a danger signal signifying tissue stress or injury. As a ligand of innate immunity receptors and activator of the inflammasome, bigly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014